
TEORÍA DE REDES DE TELECOMUNICACIONES

Grado en Ingeniería Telemática
Grado en Ingeniería en Sistemas de Telecomunicación

Curso 2015-2016

Lab work #10. Joint topology, routing and
capacity design (TCFA)

(1 session)

Author:

Pablo Pavón Mariño



1 Objectives

The goals of this lab work are:

1. Create Net2Plan algorithms that solve several variants of the TCFA problem (Topology, Flow
(routing), Capacity assignment) solving the formulations using the Java Optimization Modeler
(JOM) library.

2. Gain experience with the different forms of writing optimization problems in JOM.

2 Duration

This lab work is designed for one session of two hours.

3 Evaluation

This lab work has been designed to guide the students in their learning of Net2Plan. The annotations
the students make in this document are for their use when studying the course, and do not have to be
delivered to the teacher for evaluation.

4 Documentation

The resources needed for this lab work are:

• JOM library documentation (see http://www.net2plan.com/jom).

• Net2Plan tool and their documentation (see http://www.net2plan.com/).

• Instructions in this wording.

5 Previous work before coming to the lab

• Read Section 7.3 of [1], and the lecture notes regarding flow-link formulations.

• Refresh your reading in the JOM documentation in http://www.net2plan.com/jom, in particu-
lar, how vector of variables and constraints are handled.

6 TCFA problem

Let N be a given set of nodes, and D the offered traffic to the network. For each demand d, hd denotes
its known offered traffic. We are interested in creating a Net2Plan algorithm that solves the TCFA
problem that finds (i) the links to install in the network, (ii) their capacities, and (iii) how the traffic
in the demands is routed over the links. Two nodes can be connected by zero or one link, and the
maximum link capacity is denoted as U .

1



The optimization target is minimizing the total network cost, which sums a fixed cost ckm per km
of link installed (whatever its capacity is), and a fixed cost cu per capacity unit installed (whatever
the link length is).

The problem is formulated as follows:

• Input parameters (known constants):

– N : Set of network nodes.

– E : Set of candidate network links. We have one candidate link for each node pair. From
this information, δ+(n) denotes the set of candidate links outgoing from node n, and δ−(n)
the set of incoming candidate links to n.

– D: Set of offered unicast demands.

– hd, d ∈ D: Offered traffic of a demand d.

– U : Maximum capacity of a link.

• Decision variables:

– ze, e ∈ E : 1 if candidate link e is actually installed, and 0 otherwise (there is no link there,
and then the capacity of this candidate link must be zero).

– xde, d ∈ D, e ∈ E : Traffic of demand d that traverses candidate link e.

– ue, e ∈ E : Capacity of candidate link e.

• Formulation:

min ckm
∑
e

deze + cu
∑
e

ue, subject to: (1a)

ue ≤ Uze, ∀e ∈ E (1b)

∑
e∈δ+(n)

xde −
∑

e∈δ−(n)

xde =


hd, if n = a(d)

−hd, if n = b(d)

0, otherwise
, ∀d ∈ D,∀n ∈ N (1c)

∑
d

xde ≤ ue, ∀e ∈ E (1d)

ue ≥ 0, xde ≥ 0, ∀d ∈ D, e ∈ E (1e)

The objective function (1a) minimizes the total network cost, summing the cost of the links, and
the cost of the capacity in them. Constraints (1b) makes that (i) if a candidate link e does not exist
(ze = 0), then there cannot be capacity in it (ue = 0), and (ii) if a candidate link exists (ze = 1), the
link capacity is limited to U . Constraints (1c) are the flow conservation constraints. Constraints (1d)
mean that for each link, the traffic carried in the link is less or equal than its capacity (and thus, no
link is oversubscribed). Finally, (1e) means that capacity links and carried traffics are non-negative.

7 Net2Plan algorithm

The student should develop a Net2Plan algorithm solving problem (1) following the next steps:

1. Copy the AlgorithmTemplate.java file in Aula Virtual and rename it as FlowLinkUnicast.java.

2



2. The algorithm has the input parameters:

• maximumLinkCapacity, of default value 1000 (U in (1)).

• costPerGbps, of default value 1 (cu in (1)).

• costPerKm, of default value 1 (ckm in (1)).

3. Remove all the network links.

4. Set the routing type as source routing.

5. Add a full mesh of links in the netPlan design (one betweem each pair of nodes). They are the
candidate links E in (1). Link capacity is set to zero, its length in km is set as the Euclidean
distance between the nodes (use getNodePairEuclideanDistance), and the propagation speed
is et to 200000 km/s.

6. Create an object of the type OptimizationProblem (e.g. of name op).

7. Add the problem decision variables:

• z_e: one variable per candidate link, which can take the values 0 or 1. Double.MAX_VALUE.

• u_e: one variable per candidate link, with the link capacity which can take values between
0 and maximumLinkCapacity.

• x_de: one variable per demand and candidate link. The minimum value of the variables is
set to zero, the maximum to Double.MAX_VALUE.

8. Set the problem objective function.

9. Use a for loop, with one iteration per link (candidate), to add the constraints (1b). One constraint
is added inside each iteration of the loop. For adding the constraint of a candidate link e, set a
JOM input parameter of name e, with a value equal to the index of the link.

10. Use a double for loop with one iteration per network node, and then one inner iteration per
demand, to add the constraints (1c). For adding the conservation constraint of a demand d and
node n:

• Set the JOM input parameters:

– deltaPlus with the indexes of the output candidate links of the current node. For this,
use the method getOutgoingLinks of the node object to get the output links, and the
method NetPlan.getIndexes to convert the collection of links to their indexes.

– deltaMinus with the indexes of the incoming candidate links of the current node. For
this, use the method getIncomingLinks of the node object to get the incoming links,
and the method NetPlan.getIndexes to convert the collection of links to their indexes.

– h_d with the current demand offered traffic.
– d with the current demand index.

• Set the constraint using the function sum, over x_de, but restricting the sum to the elements
in row d and the columns in deltaPlus or deltaMinus.

11. Use a for loop with one iteration per candidate link, to add the constraints (1d). One constraint
is added inside each iteration of the loop. For adding the constraint of a candidate link e:

• Set a JOM input parameter of name e with the current candidate link index.

• Set the constraint using the function sum, over all the demands (using the JOM keyword
all in the demand coordinate), and the candidate link of index e.

3



12. Call the solver to find a numerical solution. Use the option maxSolverTimeInSeconds to set the
maximum solver time to 10 seconds. The solver will return the best solution found so far after
10 seconds, if an optimum solution was not found before. It may happen that the solver could
not find any feasible solution. To check this situation use the method solutionIsFeasible of
the OptimizationProblem object, and raise an exception if a feasible solution was not found by
the solver.

13. Retrieve the primal solution obtained for x_de, and convert it into a DoubleMatrix2D object using
the method view2D. An object of the class DoubleMatrix2D contains a 2D matrix and permits
making operations with it efficiently. Use the method of NetPlan called setRoutingFromDe-
mandLinkCarriedTraffic. This method automatically creates the routes in the network that are
consistent to what appears in the xde 2D matrix computed. Note that in the xde values obtained,
each (d, e) coordinate contains the amount of traffic of d in link e, and not the fraction of traffic
respect to hd. This is important when calling the method setRoutingFromDemandLinkCarried-
Traffic. Since, this formulation cannot create loops (solutions with loops are never optimal, since
they are strictly worse than the same routes without loops), set the option that automatically
eliminates them to false.

14. Retrieve the primal solution obtained for u_e. Set the capacity of the candidate links to that
given by the u_e.

15. Remove all the candidate links without capacity installed, since these links are not part of the
design. For this, use the method removeAllLinksUnused in the netPlan object. This method
removes all the links with a capacity lower than a threshold. Use 0.01 as a threshold1.

7.1 Check the algorithm

Load the network example4nodes.n2p, and the traffic matrix in tm4nodes.n2p. The algorithm should
produce a solution with six links and a total capacity installed summing all the network links of 108.18
units.

Quiz 1. Load the network example4nodes.n2p, and the traffic matrix in tm4nodes.n2p (total offered
traffic equal to 100).

• Run the algorithm with parameter costPerKm = 0, and any no-zero value in costtPerGbps.
How is the topology created? why?

Answer : The topology is a full-mesh with all the links. The reason is that links are unexpensive,
while capacity has a cost. Then, it is better to carry the traffic in direct links between the
end nodes, instead of making the traffic traverse more than one link.

• Fix parameter costPerKm = 1, maximumLinkCapacity = 1000 and fill in Table 1 running the
algorithm for different values of costPerGbps. Explain the observed of the topologies as the
costPerGbps grows.

Answer : As the cost per Gbps of capacity grows, it is better the cost of the links becomes more
and more unimportant. Then, it is better to add more links to the design, so more traffic
follows shortest routes (and thus the total consumed bandwidth is lower).

1The reason for not using zero as a threshold is that the solver can assign non-zero but small capacities to some links,
because of its finite numerical precision. These links should be eliminated from the design.

4



Table for example4nodes.n2p
c_Gbps Number of links Total capacity installed
0.01 4 200
0.1 5 144
1 6 108.18
10 8 102.2
100 12 100

8 Problem variations

Quiz 2. Modify formulation (1) to force the capacity in the links to be an integer multiple of C, the
so-called capacity module. Then, solve the formulation:

min ckm
∑
e

deze + cu
∑
e

Cae, subject to: (2a)

Cae ≤ Uze, ∀e ∈ E (2b)

∑
e∈δ+(n)

xde −
∑

e∈δ−(n)

xde =


hd, if n = a(d)

−hd, if n = b(d)

0, otherwise
, ∀d ∈ D,∀n ∈ N (2c)

∑
d

xde ≤ Cae, ∀e ∈ E (2d)

ae ∈ {0, 1, 2, . . .}, xde ≥ 0, ∀d ∈ D, e ∈ E (2e)

where decision variables ae, e ∈ E are now the (integer) number of capacity modules installed in
the link e, and Cae is now the capacity of link e, and replaces ue in formulation (1). Introduce C as a
user-defined parameter with name capacityModule, and default value 10.

Note: The algorithm with the default parameters should install 8 links and 120 capacity units in the
network example4nodes.n2p with the traffic matrix in tm4nodes.n2p.

Quiz 3. Will always formulation (2) produce results with a higher cost than formulation (1)? Why?

Answer : The cost will be always higher. The reason is that problem (2) is the same as problem (??)
with more constraints: now the capacities have to be modular. Any feasible solution in (2) is
also valid for (1), but the other way around may not hold.

9 Matricial form of problem constraints (optional)

As has been shown in other lab sessions, flow conservation constraints (1c) and link capacity constraints
(1d) can be set in only single call to addConstraint method, using matrix and vectors of constraints.

• Flow conservation constraints can be set with:

Ane × x′de = And × diag(h) (3)

5



where Ane is the node-link incidence matrix which can be obtained as an sparse matrix in
Net2Plan using the NetPlanmethod getMatrixNodeLinkIncidence. And is the node-demand in-
cidence matrix, which can be obtained with the NetPlanmethod getMatrixNodeDemandIncidence.
Finally, h is the vector with the demands’ offered traffic, which can be obtained with getVectorDemandOfferedTraffic.

• Link capacity constraints can be set with the expression:

sum(x_de,1) <= u_e

which makes the vector of traffic carried in each link, be element-by-element less or equals than
the vector of link capacities.

Constraints (1b), can be easily set in a vectorial form with:

u_e <= U * z_e

Quiz 4. Rewrite the algorithm of (1) using their matricial form.

10 Work at home after the lab work

The student is encouraged to complete all the Quizs that he/she could not finish during the lab session.

6



Bibliography

[1] P. Pavón Mariño, “Optimization of computer networks. Modeling and algorithms. A hands-on ap-
proach”, Wiley 2016.

7


